GRAPHICAL MODELS

J. Elder

Graphical Models

□ These slides were modified from:

Christopher Bishop, Microsoft UK

PART 1 DIRECTED GRAPHICAL MODELS (BAYES NETS)

J. Elder

Directed Graphical Models and the Role of Causality

Graphical Models

- Bayes nets are directed acyclic graphs in which each node represents a random variable.
- Arcs signify the existence of direct causal influences between linked variables.
- □ Strengths of influences are quantified by conditional probabilities

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathrm{pa}_k)$$

where pa_k is the set of 'parent' nodes of node k.

□ NB: For this to hold it is critical that the graph be acyclic.

Bayesian Networks

Graphical Models

Directed Acyclic Graph (DAG)

From the definition of conditional probabilities (product rule):

$$p(a, b, c) = p(c|a, b)p(a, b) = p(c|a, b)p(b|a)p(a)$$

In general:

$$p(x_1, \ldots, x_K) = p(x_K | x_1, \ldots, x_{K-1}) \ldots p(x_2 | x_1) p(x_1)$$

This corresponds to a complete graph.

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

5

Bayesian Networks

Graphical Model

However, many systems have sparser causal relationships between their variables.

$$p(x_{1}) = p(x_{1})p(x_{2})p(x_{3})p(x_{4}|x_{1}, x_{2}, x_{3}) p(x_{5}|x_{1}, x_{3})p(x_{6}|x_{4})p(x_{7}|x_{4}, x_{5})$$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1} p(x_k | \mathrm{pa}_k)$$

Examples of Bayesian Networks

Example: Bayesian Curve Fitting

Graphical Models

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Bayesian Curve Fitting

Graphical Models

$$p(\mathbf{t}, \mathbf{w}) = p(\mathbf{w}) \prod_{n=1}^{N} p(t_n | y(\mathbf{w}, x_n))$$

J. Elder

Bayesian Curve Fitting

Graphical Model

Input variables and explicit hyperparameters

$$p(\mathbf{t}, \mathbf{w} | \mathbf{x}, \alpha, \sigma^2) = p(\mathbf{w} | \alpha) \prod_{n=1}^{N} p(t_n | \mathbf{w}, x_n, \sigma^2).$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

10

Bayesian Curve Fitting — Learning

Graphical Models

Conditioning on training data: we represent the fact that a variable has been observed (and is therefore fixed) by shading the corresponding node.

Bayesian Curve Fitting - Prediction

Graphical Models

Predictive distribution:
$$p(\widehat{t}|\widehat{x}, \mathbf{x}, \mathbf{t}, \alpha, \sigma^2) \propto \int p(\widehat{t}, \mathbf{t}, \mathbf{w}|\widehat{x}, \mathbf{x}, \alpha, \sigma^2) \, \mathrm{d}\mathbf{w}$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Generative Models of Perception

Graphical Models

13

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Discrete Variables

Graphical Models

□ General joint distribution: K² -1 parameters

Independent joint distribution: 2(K-1) parameters

 $\sum_{k=1}^{\mathbf{x}_1} \sum_{k=1}^{\mathbf{x}_2} p(\mathbf{x}_1, \mathbf{x}_2 | \boldsymbol{\mu}) = \prod_{k=1}^K \mu_{1k}^{x_{1k}} \prod_{l=1}^K \mu_{2l}^{x_{2l}}$

Discrete Variables

Graphical Models

- General distributions require many parameters.
- General joint distribution over M variables:
 K^M -1 parameters
- It is thus extremely important to identify structure in the system that corresponds to a sparser graphical model and hence fewer parameters.

Discrete Variables

Graphical Models

Example: M -node Markov chain
 K -1 + (M -1) K(K -1) parameters

16

Discrete Variables: Bayesian Parameters

Graphical Models

$$p(\boldsymbol{\mu}_m) = \operatorname{Dir}(\boldsymbol{\mu}_m | \boldsymbol{\alpha}_m)$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Discrete Variables: Bayesian Parameters

Graphical Models

The number of parameters can also be reduced if parameters can be shared, or 'tied':

Parameterized Conditional Distributions

Graphical Models

The number of parameters can also be reduced by restricting the generality of conditional distributions.

If x_i and y are binary random variables, then the general form of $p(y|x_1...x_M)$ has 2^M parameters.

Parameterized Conditional Distributions

Graphical Models

The parameterized form

$$p(y=1|x_1,\ldots,x_M) = \sigma\left(w_0 + \sum_{i=1}^M w_i x_i\right) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

requires only M + 1 parameters

J. Elder

20

Linear-Gaussian Models

Graphical Models

Each node is Gaussian, the mean is a linear function of the parents.

$$p(x_i | pa_i) = \mathcal{N}\left(x_i \left| \sum_{j \in pa_i} w_{ij} x_j + b_i, v_i \right) \right)$$

Can find the mean and covariance of the joint Gaussian distribution recursively:

$$\boldsymbol{X}_{i} = \sum_{j \in pa_{i}} \boldsymbol{W}_{ij} \boldsymbol{X}_{j} + \boldsymbol{b}_{i} + \sqrt{\boldsymbol{V}_{i}} \boldsymbol{\varepsilon}_{i}$$

$$E[x_i] = \sum_{j \in pa_i} w_{ij} E[x_j] + b_i \qquad \operatorname{cov}[x_i, x_j] = \sum_{k \in pa_j} w_{jk} \operatorname{cov}[x_i, x_k] + I_{ij} v_j$$

Linear-Gaussian Models

Graphical Models

Vector variables

$$p(\mathbf{x}_i | \mathrm{pa}_i) = \mathcal{N}\left(\mathbf{x}_i \left| \sum_{j \in \mathrm{pa}_i} \mathbf{W}_{ij} \mathbf{x}_j + \mathbf{b}_i, \mathbf{\Sigma}_i \right. \right)$$

PART 2. CONDITIONAL INDEPENDENCE

J. Elder

Conditional Independence

Graphical Models

 \square a is independent of b given C

$$p(a|b,c) = p(a|c)$$

Equivalently

$$p(a,b|c) = p(a|b,c)p(b|c)$$
$$= p(a|c)p(b|c)$$

Notation

 $a \perp\!\!\!\perp b \mid c$

24

Graphical Models

- In this system, a is not directly causal on b, and b is not directly causal on a.
- Yet a and b are not, in general, a independent.

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

 $p(a,b) = \sum_{c} p(a \mid c) p(b \mid c) p(c) \neq p(a) p(b)$

Thus $a \not\perp b \mid \emptyset$

Graphical Models

- We can also consider the statistical relationship between a and b once c has been observed.
- In this case, c is no longer a random variable it has a fixed value.
- The statistical relationship between a and b under these conditions is now expressed as the joint distibution, conditioned

on c.

$$a$$

"tail-to-tail"
 b
 $p(a,b|c) = \frac{p(a,b,c)}{p(c)}$
 $= p(a|c)p(b|c)$
 $\longrightarrow a \perp b \mid c$

Thus observation of c blocks the statistical relationship between a and b.

27

Graphical Models

p(a, b, c) = p(a)p(c|a)p(b|c)

$$p(a,b) = p(a) \sum_{c} p(c|a)p(b|c) = p(a)p(b|a)$$

 $\longrightarrow a \not\perp b \mid \emptyset$

J. Elder

Graphical Models

28

Thus observing (conditioning on) c renders a and b independent.

 $\longrightarrow a \perp b \mid c$

In this case, a and b are unconditionally independent (when c is not observed.)

29

END OF LECTURE NOV 17, 2010

J. Elder

Graphical Models

What if c is observed?

- In this case, observation of c makes a and b statistically dependent!
- □ This is known as "explaining away"

J. Elder

Causation

Graphical Models

Two events do not become relevant to each other merely by virtue of predicting a common consequence, but they do become relevant when the consequence is actually observed.

Example of Explaining Away: The Chromatic Mach Card

3 Basic Forms

Graphical Models

34

D-separation

Graphical Models

- A, B, and C are non-intersecting subsets of nodes in a directed graph.
- We wish to determine whether A and B are independent when conditioned on C.
- A path from A to B is said to be blocked if it contains a node such that either
 - 1. the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or
 - 2. the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies

 $A \perp\!\!\!\perp B \mid C$

35

END OF LECTURE NOV 22, 2010

J. Elder
D-separation: Example

Graphical Models

Are a and b independent when conditioned on c?

J. Elder

D-separation: I.I.D. Data

Graphical Model

$$p(\mathcal{D}|\mu) = \prod_{n=1}^{N} p(x_n|\mu)$$

$$p(\mathcal{D}) = \int_{-\infty}^{\infty} p(\mathcal{D}|\mu) p(\mu) \,\mathrm{d}\mu \neq \prod_{n=1}^{N} p(x_n)$$

38

The Markov Blanket

Graphical Model

The Markov blanket of a node x_i is the minimal set of nodes that separate x_i from the rest of the graph.

J. Elder

PART 2 UNDIRECTED GRAPHICAL MODELS (MARKOV RANDOM FIELDS)

J. Elder

Markov Random Fields

Graphical Models

- For MRFs, conditional independence is determined by graph separation: if all paths between A and B go through C, A and B are independent when conditioned on C.
- The Markov blanket of a node x is just the set of nodes directly connected to x. This is also known as the neighbourhood of x.

Markov Random Fields

Graphical Models

- Thus, as for a directed graphical model, an MRF defines a set of conditional independence relationships between its variables.
- In fact, an MRF is defined by these conditional independence relationships (Markov properties).

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Factoring

Graphical Models

- Recall how we factor **directed** graphs
- We seek a comparable method for undirected graphs.

 $p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$ $p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$

General Factorization

$$p(\mathbf{x}) = \prod_{k=1} p(x_k | \mathrm{pa}_k)$$

Factoring

Graphical Models

- Nodes that are not directly connected are rendered independent by conditioning on the intervening nodes.
- Such nodes must therefore be in different factors in order for the conditional independence properties of the graph to be represented in the factorization.

Cliques

45

Graphical Models

- Thus two nodes should be in the same factor if and only if they are directly connected.
- □ This means that factors must consist of fully connected sets of nodes.
- Such fully-connected sets of nodes are called cliques.
- □ A clique that cannot be enlarged is called a **maximal clique**.

Maximal Clique

Cliques

46

Graphical Models

- □ Thus each factor is a function of a clique.
- In fact, we can restrict factors to being functions of maximal cliques, since smaller cliques must be subsets of maximal cliques.

END OF LECTURE NOV 24, 2010

J. Elder

Potential Functions

Graphical Models

Let C denote a maximal clique, and \mathbf{x}_c the variables in that clique.

Then the joint distribution is written as a product of **potential functions** $\psi_c(\mathbf{x}_c)$ over these maximal cliques:

$$\rho(\mathbf{x}) = \frac{1}{Z} \prod_{c} \psi_{c} \left(\mathbf{x}_{c} \right)$$

where the normalizing constant *Z* (aka the **partition function**) is given by $Z = \sum_{\mathbf{x}} \prod_{c} \psi_{c} \left(\mathbf{x}_{c} \right)$

Potential Functions

Graphical Models

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \psi_{c} \left(\mathbf{x}_{c} \right) \qquad \qquad Z = \sum_{\mathbf{x}} \prod_{c} \psi_{c} \left(\mathbf{x}_{c} \right)$$

- Since Z is a function of any parameters of ψ , it is needed in order to learn these parameters.
- \Box Unfortunately calculation of Z is usually not feasible.
- □ For example, if **x** consists of *M* discrete variables x_i , each with *K* states, there are K^M possible configurations of **x**, and hence K^M terms in *Z*.

Maximal Clique

Potential Functions

Graphical Models

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \psi_{c} \left(\mathbf{x}_{c} \right) \qquad \qquad Z = \sum_{\mathbf{x}} \prod_{c} \psi_{c} \left(\mathbf{x}_{c} \right)$$

- Evaluation of local conditional probabilities is feasible, since the partition function cancels out.
- To evaluate local marginals we can work with the unnormalized distributions, and then normalize the marginals at the end.

Boltzmann & Gibbs Distributions

Graphical Models

If we restrict the potential functions $\psi_c(\mathbf{x}_c)$ to be strictly positive we can represent them as exponentials of energy functions $E(\mathbf{x}_c)$: $\psi_c(\mathbf{x}_c) = \exp\{-E(\mathbf{x}_c)\}$

Then $p(\mathbf{x}) = \frac{1}{Z} \prod_{c} \psi_{c}(\mathbf{x}_{c})$ is known as a **Boltzmann**, or **Gibbs** distribution.

A set of random variables **x** whose joint distribution is a Gibbs distribution is called a **Gibbs random field (GRF)**.

Hammersley-Clifford Theorem

Graphical Models

- □ An MRF is defined by a set of local conditional independence relationships.
- A GRF is defined by a joint distribution that factors into local exponential clique potentials.
- The Hammersley-Clifford Theorem establishes that any MRF defined over an undirected graph is also a GRF defined over the maximal cliques of that graph.
- This is of great importance, as it relates the local Markov properties of the system to the global probability of configurations.

52

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Illustration: Image De-Noising

Graphical Models

Original Image

Noisy Image

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Illustration: Image De-Noising

Observed noisy pixels y_i y_i y_i x_i

Unobserved original pixels

Ising Model:

Graphical Models

Binary image:
$$x_i, y_i \in \{-1, +1\}$$

Bias Smoothness $E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_{i} - \beta \sum_{\{i,j\}} x_{i} x_{j}$ $-\eta \sum_{i} x_{i} y_{i}$ Fidelity

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$

YORK

Inference

56

Graphical Models

- \square Suppose we know the parameters h, β , η .
- How do we estimate the x that maximizes

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$
 ?

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Inference Algorithm: ICM

Graphical Models

- □ Iterated conditional modes (ICM) is a simple coordinate descent method for finding a local maximum of $p(\mathbf{x} | \mathbf{y})$.
- We simply select nodes xi in sequence (randomly or systematically), and flip their state if it lowers the energy.
- The algorithm halts when no local state change can lower the energy. This is a local maximum of p(x,y).

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$

Unobserved original pixels

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Illustration: Image De-Noising

Graphical Models

Noisy Image

Restored Image (ICM)

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Illustration: Image De-Noising

Graphical Models

□ ICM will only find a local maximum.

In fact, for this problem, the global maximum can be found using graph cuts.

Restored Image (ICM)

Restored Image (Graph cuts)

Relating Directed Graphs to MRFs

Graphical Models

- Directed graphs can always be converted to undirected graphs.
- This is used for some inference techniques, e.g., the junction tree algorithm.
- However, some independence properties may no longer be represented after conversion.

Graphical Models

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Graphical Models

Additional links are required between co-parents

63

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

J. Elder

Graphical Models

Thus the general procedure is:

- Add additional undirected links between all pairs of co-parents
- Drop the arrows
- Initialize the potentials to 1
- Multiply the conditional factors into each corresponding potential
- Note that converting from undirected to directed is much less common, and more difficult.

Graphical Models

In this case, the independence properties represented in the original directed graph are lost after conversion.

65

Directed vs. Undirected Graphs (2)

Graphical Models

No **undirected** graph can represent these conditional independence properties.

No **directed** graph can represent these conditional independence properties.

66

Directed vs. Undirected Graphs (1)

Graphical Models

- \square *P* = set of all distributions over a set of variables **x**.
- \Box D = set of all distributions whose conditional independence properties can be represented by a directed graph
- \Box U = set of all distributions whose conditional independence properties can be represented by an undirected graph

PART 3 INFERENCE IN GRAPHICAL MODELS

J. Elder

Inference in Graphical Models

Graphical Models

- In inference, we clamp some of the variables to observed values, and then compute the posterior over other, unobserved variables.
- □ Simple example:

Inference on a Chain

Graphical Models

Let's assume each variable is discrete, having K states.

Computing marginal for one variable requires integrating out N-1 variables.

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

 \Box If done naively, this summation will have K^{N-1} terms.

Inference on a Chain

1

Graphical Models

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

This can be made much more efficient by exploiting the modularity of the joint probability.

□ For example, note that:

$$\sum_{x_1, x_2, x_3} \psi(x_1, x_2) \psi(x_2, x_3) = \sum_{x_3, x_2} \left(\psi(x_2, x_3) \sum_{x_1} \psi(x_1, x_2) \right)$$

If all variables have K states, this reduces the number of arithmetical operations from K^3 additions and K^3 multiplications to $2K^2 + K$ additions and K^2 multiplications.

Inference on a Chain

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

$$P(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$

$$p(x_n) = \frac{1}{Z} \left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \cdots \right]$$
$$\mu_{\alpha}(x_n)$$
$$\left[\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \cdots \right]$$
$$\mu_{\beta}(x_n)$$

This results in a reduction in the number of operations from $(N - 1)K^N$ multiplications and K^{N-1} additions to $(N - 3)K^2 + K$ multiplications and $(N - 1)K^2$ additions.
Graphical Models

These two factors can be viewed as vector messages passed to x_n from the left and right portions of the network:

Graphical Models

These two messages can each in turn be broken down as the product of a matrix potential and a vector message:

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Graphical Models

Initial conditions:

$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2) \qquad \mu_{\beta}(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)$$

Normalization:

$$Z = \sum_{x_n} \mu_\alpha(x_n) \mu_\beta(x_n)$$

75

Graphical Models

□ To compute local marginals:

- Compute and store all forward messages, $\mu_lpha(x_n)$
- Compute and store all backward messages, $\,\mu_eta(x_n)\,$
- Compute Z at any node X_m
- Compute for all variables required:

$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

77

Graphical Models

Message passing can also be used to do efficient exact inference over trees.

Factor Graphs

Graphical Models

Factor graphs allow the conditional independence structure of both undirected and directed graphs to be represented explicitly in a common framework.

 $p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$

 $p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$ where f_s is a factor over a subset of variables \mathbf{x}_s . CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Factor Graphs from Undirected Graphs

Graphical Models

Factor graphs can potentially communicate more detailed information about about the underlying factorization. x_1 x_1 x_2 x_1 x_2 x_2 f_a f_b x_3 x_3 x_3 $f_a(x_1, x_2, x_3)f_b(x_2, x_3)$ $f(x_1, x_2, x_3)$ $\psi(x_1, x_2, x_3)$ $= \psi(x_1, x_2, x_3) = \psi(x_1, x_2, x_3)$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

END OF LECTURE NOV 29, 2010

J. Elder

Factor Graphs from Directed Graphs

Graphical Models

The Sum-Product Algorithm

The Sum-Product Algorithm (1)

Graphical Models

Objective:

- i. to obtain an efficient, exact inference algorithm for finding marginals in acyclic graphs;
- ii. in situations where several marginals are required, to allow computations to be shared efficiently.
- Key idea: Distributive Law of multiplication over addition

$$ab + ac = a(b + c)$$

The Sum-Product Algorithm (2)

84

where X_s is the set of all variables in the subtree connected to x via f_s .

The Sum-Product Algorithm (3)

Graphical Models

85

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Sum-Product Algorithm (4)

Graphical Models

$$F_s(x, X_s) = f_s(x, x_1, \dots, x_M) G_1(x_1, X_{s1}) \dots G_M(x_M, X_{sM})$$

where X_{si} is the set of all variables in the subtree connected to f_s via x_i .

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Sum-Product Algorithm (5)

Graphical Models

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Sum-Product Algorithm (6)

Graphical Models

$$\mu_{x_m \to f_s}(x_m) \equiv \sum_{X_{sm}} G_m(x_m, X_{sm}) = \sum_{X_{sm}} \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} F_l(x_m, X_{ml})$$
$$= \prod_{l \in \operatorname{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Sum-Product Algorithm

Graphical Models

- Thus the marginal at x is given by the product of messages arriving at that node.
- Each message is computed recursively in terms of other messages.

The Sum-Product Algorithm (7)

Graphical Models

Initialization

- View x as the root of the tree
- Begin at leaf nodes
 - Variable leaf nodes have a single factor node as parent
 - Factor leaf nodes have a single variable node as parent

The Sum-Product Algorithm

Graphical Models

- Marginals for all variable nodes could be computed by simply repeating this process.
- But this is wasteful, as many of the required computations are shared.

The Sum-Product Algorithm (8)

Graphical Models

□ To compute all local marginals at once:

- 1. Pick an arbitrary node as root
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- 3. Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- 4. Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

Sum-Product: Example (1)

93

Graphical Models

Sum-Product: Example (2)

94

Graphical Models

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Sum-Product: Example (3)

95

Graphical Models

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Sum-Product: Example (4)

96

Graphical Models

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Max-Sum Algorithm

The Max-Sum Algorithm (1)

98

Graphical Models

Objective: an efficient algorithm for finding

- i. the value X^{max} that maximises p(x);
- ii. the value of $p(x^{max})$.

□ In general, maximum marginals ≠ joint maximum.

$$\begin{array}{c|cccc} x = 0 & x = 1 \\ \hline y = 0 & 0.3 & 0.4 \\ y = 1 & 0.3 & 0.0 \\ \end{array}$$

$$\arg\max_{x} p(x, y) = 1 \qquad \arg\max_{x} p(x) = 0$$

The Max-Sum Algorithm (2)

Graphical Models

Maximizing over a chain (max-product)
To calculate max p(x):

END OF LECTURE DEC 1, 2010

J. Elder

The Max-Sum Algorithm (3)

Graphical Models

- Generalizes to tree-structured factor graph
- Designate one node (x_n) as the root
- Starting at leaf nodes, propagate messages up to root.
- □ Final max probability is calculated by taking max over product of all incoming messages at root x_n :

$$\max_{x} p(x) = \max_{x_n} \prod_{f_s \in ne(x_n)} \mu_{f_s \to x_n}(x_n)$$

The Max-Sum Algorithm (4)

Graphical Model

 \square Max-Product \rightarrow Max-Sum

For numerical reasons, use

$$\ln\left(\max_{\mathbf{x}} p(\mathbf{x})\right) = \max_{\mathbf{x}} \ln p(\mathbf{x}).$$

Again, use distributive law

$$\max(a+b, a+c) = a + \max(b, c).$$

The Max-Sum Algorithm (5)

Graphical Models

Initialization (leaf nodes)

$$\mu_{x \to f}(x) = 0 \qquad \qquad \mu_{f \to x}(x) = \ln f(x)$$

$$\mu_{f \to x}(x) = \max_{x_1, \dots, x_M} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

$$\phi(x) = \arg \max_{x_1, \dots, x_M} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

$$\mu_{x \to f}(x) = \sum_{l \in \operatorname{ne}(x) \setminus f} \mu_{f_l \to x}(x)$$

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

The Max-Sum Algorithm (6)

Graphical Models

 \Box Termination (at root node x)

$$\log p^{\max} = \max_{x} \left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_s \to x}(x) \right]$$
$$x^{\max} = \arg \max_{x} \left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_s \to x}(x) \right]$$

The Max-Sum Algorithm

105

Graphical Models

To determine the state of the other variables, we backtrack from the root node, using the state table ϕ :

Consider a factor node $f(x_s)$, $x_s = \{x, x_1, \dots, x_M\}$. If node x_i is connected to the root through node xvia $f(x_s)$, then the state table ϕ stores

$$\phi(x) = \underset{x_{s} \setminus x}{\operatorname{arg\,max}} \left(\log f(x_{s}) + \sum_{m \in x_{s} \setminus x} \mu_{x_{m} \to f}(x_{m}) \right)$$

So to recover the maximal configuration, we unwind from the root, using $x_i^{\max} = \phi_i(x^{\max})$

The Max-Sum Algorithm (7)

Graphical Models

Example: Markov chain

106

CSE 6390/PSYC 6225 Computational Modeling of Visual Perception

Loopy Belief Propagation

107

Graphical Models

- Sum-Product on general graphs.
- Initially unit messages are passed across all links
- Then messages are passed around until convergence (not guaranteed!).
- Approximate but tractable for large graphs.
- Sometime works well, sometimes not at all.

