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Directed Graphical Models and the Role of Causality 

  Bayes nets are directed acyclic graphs in which each node represents a 
random variable. 

  Arcs signify the existence of direct causal influences between linked 
variables. 

  Strengths of influences are quantified by conditional probabilities 

  NB:  For this to hold it is critical that the graph be acyclic. 

  where pak  is the set of 'parent' nodes of node k.
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Bayesian Networks 

  Directed Acyclic Graph (DAG) 

From the definition of conditional probabilities (product rule): 

In general: 

This corresponds to a complete graph. 
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Bayesian Networks 

  However, many systems have sparser causal 
relationships between their variables. 

General Factorization 



Examples of Bayesian Networks 
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Example:  Bayesian Curve Fitting   

Polynomial 
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Bayesian Curve Fitting  

Plate 
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Bayesian Curve Fitting  

  Input variables and explicit hyperparameters 
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Bayesian Curve Fitting —Learning 

  Conditioning on training data:  we represent the fact that a 
variable has been observed (and is therefore fixed) by 
shading the corresponding node. 
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Bayesian Curve Fitting - Prediction 

Predictive distribution:  

where 
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Generative Models of Perception 
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Discrete Variables 

  General joint distribution: K2 -1 parameters 

  Independent joint distribution: 2(K -1) parameters 
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Discrete Variables 

  General distributions require many parameters. 
  General joint distribution over M variables:  

KM -1 parameters 
  It is thus extremely important to identify structure in 

the system that corresponds to a sparser graphical 
model and hence fewer parameters. 
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Discrete Variables 

  Example:  M -node Markov chain  
 K -1 + (M -1) K(K -1) parameters 
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Discrete Variables: Bayesian Parameters 
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Discrete Variables: Bayesian Parameters 

  The number of parameters can also be reduced if 
parameters can be shared, or ‘tied’: 

Shared (or ‘tied’) prior 
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Parameterized Conditional Distributions 

  The number of parameters can also be reduced by 
restricting the generality of conditional distributions. 

   

If x i  and y are binary random variables, 

then the general form of p y|x1…xM( )  has 2M  parameters.
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Parameterized Conditional Distributions 

The parameterized form 

requires only M + 1 parameters    
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Linear-Gaussian Models 

  Each node is Gaussian, the mean is a linear function of the 
parents. 

  Can find the mean and covariance of the joint Gaussian 
distribution recursively: 

 
xi = wij xj + bi + vi ε i

j∈pai

∑

 
E xi⎡⎣ ⎤⎦ = wijE xj

⎡⎣ ⎤⎦ + bi
j∈pai

∑
  
cov xi ,xj

⎡⎣ ⎤⎦ = w jk cov xi ,xk⎡⎣ ⎤⎦ + Iijv j
k∈paj

∑
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Linear-Gaussian Models 

  Vector variables 
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Conditional Independence 

  a is independent of b given c 

  Equivalently 

  Notation 
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Conditional Independence: Example 1 

  In this system, a is not directly 
causal on b, and b is not directly 
causal on a. 

  Yet a and b are not, in general, 
independent. 

  
p(a,b) = p(a | c) p(b | c) p(c)

c
∑ ≠ p(a) p(b)

Thus 
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Conditional Independence: Example 1 

  We can also consider the statistical relationship between a and 
b once c has been observed. 

  In this case, c is no longer a random variable – it has a fixed 
value. 

  The statistical relationship between a and b under these 
conditions is now expressed as the joint distibution, conditioned 
on c. 

  Thus observation of c blocks the statistical relationship between 
a and b. 

“tail-to-tail” 
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Conditional Independence: Example 2 
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Conditional Independence: Example 2 

  What if we observe c? 

  Thus observing (conditioning on) c renders a and b 
independent. 

“head-to-tail” 
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Conditional Independence: Example 3 

  In this case, a and b are unconditionally independent (when c is 
not observed.) 

“head-to-head” 
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Conditional Independence: Example 3 

  What if c is observed? 

  In this case, observation of c makes a and b statistically 
dependent! 

  This is known as “explaining away” 
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Causation 

  Two events do not become relevant to each other 
merely by virtue of predicting a common 
consequence, but they do become relevant when the 
consequence is actually observed. 
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Example of Explaining Away: The Chromatic Mach Card 

Flat Card 

Folded Card 

Monocular 
Binocular 

Magenta 

(Bloj, Kersten & Hurlbert 1999) 



Graphical Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

34 

3 Basic Forms 

Tail-to-Tail Head-to-Tail Head-to-Head 
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D-separation 

  A, B, and C are non-intersecting subsets of nodes in a directed 
graph. 

  We wish to determine whether A and B are independent when 
conditioned on C. 

  A path from A to B is said to be blocked if it contains a node such 
that either 
1.  the arrows on the path meet either head-to-tail or tail-to-tail at the node, 

and the node is in the set C, or 
2.  the arrows meet head-to-head at the node, and neither the node, nor any 

of its descendants, are in the set C. 

  If all paths from A to B are blocked, A is said to be d-separated 
from B by C.  

  If A is d-separated from B by C, the joint distribution over all 
variables in the graph satisfies                        
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D-separation: Example 

Are a and b independent when conditioned on c? 
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D-separation: I.I.D. Data 
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  The Markov blanket of a node xi is the minimal set of 
nodes that separate xi from the rest of the graph. 

  Factors independent of xi cancel. 

The Markov Blanket 

  

=
p xi | pai( ) p xk | pak( )

i∈pak

∏
p xi | pai( ) p xk | pak( )dxi

i∈pak

∏∫

“co-parent” 
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Markov Random Fields 

  For MRFs, conditional independence is determined by graph 
separation:  if all paths between A and B go through C, A and 
B are independent when conditioned on C. 

  The Markov blanket of a node x is just the set of nodes 
directly connected to x.  This is also known as the 
neighbourhood of x. 

Markov Blanket 
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Markov Random Fields 

  Thus, as for a directed graphical model, an MRF defines a set 
of conditional independence relationships between its 
variables. 

  In fact, an MRF is defined by these conditional independence 
relationships (Markov properties). 

Markov Blanket 
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Factoring 

  Recall how we factor directed graphs 
  We seek a comparable method for undirected 

graphs. 

General Factorization 
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Factoring 

  Nodes that are not directly connected are rendered 
independent by conditioning on the intervening nodes. 

  Such nodes must therefore be in different factors in order for 
the conditional independence properties of the graph to be 
represented in the factorization. 

Markov Blanket 
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Cliques 

  Thus two nodes should be in the same factor if and only if they are directly 
connected. 

  This means that factors must consist of fully connected sets of nodes. 

  Such fully-connected sets of nodes are called cliques. 

  A clique that cannot be enlarged is called a maximal clique. 

Clique 

Maximal Clique 
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Cliques 

  Thus each factor is a function of a clique. 

  In fact, we can restrict factors to being functions of maximal 
cliques, since smaller cliques must be subsets of maximal 
cliques. 

Clique 

Maximal Clique 
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Potential Functions 

Clique 

Maximal 
Clique 

   Let C  denote a maximal clique, and xC  the variables in that clique.

   

Then the joint distribution is written as a product of potential functions ψC xC( )
over these maximal cliques:

   
p(x) = 1

Z
ψC xC( )

C
∏

   

where the normalizing constant Z  (aka the partition function) is given by
Z = ψC xC( )

C
∏

X
∑
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Potential Functions 

  Since Z is a function of any parameters of ψ, it is 
needed in order to learn these parameters.  

  Unfortunately calculation of Z is usually not feasible. 
  For example, if x consists of M discrete variables xi, 

each with K states, there are KM possible 
configurations of x, and hence KM terms in Z. 

Clique 

Maximal 
Clique 

   
p(x) = 1

Z
ψC xC( )

C
∏

  
Z = ψC xC( )

C
∏

X
∑
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Potential Functions 

  Evaluation of local conditional probabilities is feasible, since 
the partition function cancels out. 

  To evaluate local marginals we can work with the unnormalized 
distributions, and then normalize the marginals at the end. 

Clique 

Maximal Clique 

   
p(x) = 1

Z
ψC xC( )

C
∏

  
Z = ψC xC( )

C
∏

X
∑

  

e.g., if f x1( )∝ p x1( ),
p x1 = a( ) = f x1 = a( )

f x1( )
x1

∑
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Boltzmann & Gibbs Distributions 

   

If we restrict the potential functions ψC xC( ) to be strictly positive

we can represent them as exponentials of energy functions E xC( ) :

ψC xC( ) = exp −E xC( ){ }

   
Then p(x) = 1

Z
ψC xC( )

C
∏  is known as a Boltzmann, or Gibbs distribution.

  

A set of random variables x whose joint distribution is a Gibbs distribution
is called a Gibbs random field (GRF).
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Hammersley-Clifford Theorem 

  An MRF is defined by a set of local conditional independence relationships. 

  A GRF is defined by a joint distribution that factors into local exponential 
clique potentials. 

  The Hammersley-Clifford Theorem establishes that any MRF defined over 
an undirected graph is also a GRF defined over the maximal cliques of that 
graph. 

  This is of great importance, as it relates the local Markov properties of the 
system to the global probability of configurations. 



MRF Example 
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Illustration: Image De-Noising 

Original Image Noisy Image 
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Illustration: Image De-Noising 

Observed noisy pixels 

Unobserved original pixels 

Bias Smoothness 

Fidelity 

  Binary image:  xi ,yi ∈{−1,+1}

Ising Model: 
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Inference 

  Suppose we know the parameters h, β,η. 

  How do we estimate the x that maximizes  

Observed noisy pixels 

Unobserved original pixels 

Bias Smoothness 

Fidelity 

? 
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Inference Algorithm:  ICM 

  Iterated conditional modes (ICM) is a simple coordinate descent 
method for finding a local maximum of p(x|y). 

  We simply select nodes xi in sequence (randomly or systematically), 
and flip their state if it lowers the energy. 

  The algorithm halts when no local state change can lower the energy.  
This is a local maximum of p(x,y). 

Observed noisy pixels 

Unobserved original pixels 

Bias Smoothness 

Fidelity 
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Illustration: Image De-Noising 

Noisy Image Restored Image (ICM) 



Graphical Models 

J. Elder CSE 6390/PSYC 6225 Computational Modeling of  Visual Perception 

59 

Illustration: Image De-Noising 

  ICM will only find a local maximum. 
  In fact, for this problem, the global maximum can 

be found using graph cuts.  

Restored Image (Graph cuts) Restored Image (ICM) 



Relating Directed Graphs to MRFs 
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Converting Directed to Undirected Graphs 

  Directed graphs can always be converted to 
undirected graphs. 

  This is used for some inference techniques, e.g., the 
junction tree algorithm. 

  However, some independence properties may no 
longer be represented after conversion. 
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Converting Directed to Undirected Graphs 
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Converting Directed to Undirected Graphs 

  Additional links are required between co-parents 

  
=

1
Z
ψ x1,x2 ,x3,x4( )
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Converting Directed to Undirected Graphs 

  Thus the general procedure is: 
 Add additional undirected links between all pairs of 

co-parents 
 Drop the arrows 
  Initialize the potentials to 1 
 Multiply the conditional factors into each corresponding 

potential 

  Note that converting from undirected to directed is 
much less common, and more difficult. 
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Converting Directed to Undirected Graphs 

  In this case, the independence properties represented in the 
original directed graph are lost after conversion. 

  
=

1
Z
ψ x1,x2 ,x3,x4( )
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Directed vs. Undirected Graphs (2) 

No undirected graph can represent  
these conditional independence properties. 

No directed graph can represent  
these conditional independence properties. 
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Directed vs. Undirected Graphs (1) 

  P = set of all distributions over a set of variables x. 

  D = set of all distributions whose conditional independence 
properties can be represented by a directed graph 

  U = set of all distributions whose conditional independence 
properties can be represented by an undirected graph 
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Inference in Graphical Models 

  In inference, we clamp some of the variables to 
observed values, and then compute the posterior 
over other, unobserved variables. 

  Simple example: 
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Inference on a Chain 

  Let’s assume each variable is discrete, having K 
states. 

  Computing marginal for one variable requires 
integrating out N-1 variables. 

  If done naively, this summation will have KN-1 terms. 
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Inference on a Chain 

  This can be made much more efficient by exploiting 
the modularity of the joint probability. 

  For example, note that: 

  
ψ x1,x2( )ψ x2 , x3( )

x1 ,x2 ,x3

∑ = ψ x2 ,x3( ) ψ x1,x2( )
x1

∑
⎛

⎝
⎜

⎞

⎠
⎟

x3 ,x2

∑

  

If all variables have K  states, this reduces the number of arithmetical operations from
K 3  additions and K 3  multiplications to 2K 2 + K  additions and K 2  multiplications.
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Inference on a Chain 

  This principle can be applied recursively to the left and to the right of xn: 

  

This results in a reduction in the number of operations from (N -1)K N multiplications and K N −1  additions
to (N - 3)K 2 + K  multiplications and (N -1)K 2  additions.
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Inference on a Chain 

  These two factors can be viewed as vector 
messages passed to xn from the left and right 
portions of the network: 
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Inference on a Chain 

  These two messages can each in turn be broken 
down as the product of a matrix potential and a 
vector message: 
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Inference on a Chain 

  Initial conditions: 

  Normalization: 
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Inference on a Chain 

  To compute local marginals: 

• Compute and store all forward messages,              
• Compute and store all backward messages,               
• Compute Z at any node xm  
• Compute for all variables required: 
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Trees 

  Message passing can also be used to do efficient 
exact inference over trees. 
Undirected Tree Directed Tree Polytree 
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Factor Graphs 

  Factor graphs allow the conditional independence 
structure of both undirected and directed graphs to 
be represented explicitly in a common framework. 

   where fs  is a factor over a subset of variables x s .
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Factor Graphs from Undirected Graphs 

  Factor graphs can potentially communicate more 
detailed information about about the underlying 
factorization. 
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Factor Graphs from Directed Graphs 

  

f x1,x2 ,x3( ) = p x1( ) p x2( )
p x3 | x1,x2( )



The Sum-Product Algorithm 
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The Sum-Product Algorithm (1) 

  Objective: 
i.  to obtain an efficient, exact inference algorithm for 

finding marginals in acyclic graphs; 
ii.  in situations where several marginals are required, to 

allow computations to be shared efficiently. 

  Key idea: Distributive Law of multiplication over 
addition 
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The Sum-Product Algorithm (2) 

  where Xs  is the set of all variables in the subtree connected to x via  fs . 
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The Sum-Product Algorithm (3) 
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The Sum-Product Algorithm (4) 

  where Xsi  is the set of all variables in the subtree connected to fs  via xi . 
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The Sum-Product Algorithm (5) 
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The Sum-Product Algorithm (6) 
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The Sum-Product Algorithm 

  Thus the marginal at x is given by the product of 
messages arriving at that node. 

  Each message is computed recursively in terms of 
other messages. 
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The Sum-Product Algorithm (7) 

  Initialization 
 View x as the root of the tree 
 Begin at leaf nodes 

 Variable leaf nodes have a single factor node as parent 
 Factor leaf nodes have a single variable node as parent 
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The Sum-Product Algorithm 

  Marginals for all variable nodes could be computed 
by simply repeating this process. 

  But this is wasteful, as many of the required 
computations are shared. 
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The Sum-Product Algorithm (8) 

  To compute all local marginals at once: 
1.  Pick an arbitrary node as root 
2.  Compute and propagate messages from the leaf 

nodes to the root, storing received messages at every 
node. 

3.  Compute and propagate messages from the root to 
the leaf nodes, storing received messages at every 
node. 

4.  Compute the product of received messages at each 
node for which the marginal is required, and 
normalize if necessary. 
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Sum-Product: Example (1) 
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Sum-Product: Example (2) 

 fa  fb

 fc
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Sum-Product: Example (3) 

 fa  fb

 fc
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Sum-Product: Example (4) 



The Max-Sum Algorithm 
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The Max-Sum Algorithm (1) 

  Objective: an efficient algorithm for finding  
i.  the value xmax that maximises p(x); 
ii.  the value  of p(xmax). 

  In general, maximum marginals ≠ joint maximum. 
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The Max-Sum Algorithm (2) 

  Maximizing over a chain (max-product) 
  To calculate max p(x): 

N 
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The Max-Sum Algorithm (3) 

  Generalizes to tree-structured factor graph 
  Designate one node (xn) as the root 
  Starting at leaf nodes, propagate messages up to 

root. 
  Final max probability is calculated by taking max 

over product of all incoming messages at root xn: 

  
max

x
p(x) = max

xn

µfs →xn
xn( )

fs ∈ne xn( )
∏
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The Max-Sum Algorithm (4) 

  Max-Product  Max-Sum 

 For numerical reasons, use 

 Again, use distributive law  
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The Max-Sum Algorithm (5) 

  Initialization (leaf nodes) 

  Recursion 
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The Max-Sum Algorithm (6) 

  Termination (at root node x) 

 log
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The Max-Sum Algorithm 

  To determine the state of the other variables, we backtrack 
from the root node, using the state table ϕ:     

   

Consider a factor node  f xs( ),  xs = x,x1,…xM{ }.

If node xi  is connected to the root through node x 

via  f xs( ), then the state table φ  stores

  
φ x( )  =arg max

xs \ x
log f xs( ) + µxm → f xm( )

m∈xs \ x
∑

⎛

⎝
⎜

⎞

⎠
⎟

  

So to recover the maximal configuration, we unwind from the root, using
xi

max = φi xmax( )
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The Max-Sum Algorithm (7) 

  Example: Markov chain 

2 globally maximal configurations 
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Loopy Belief Propagation 

  Sum-Product on general graphs. 
  Initially unit messages are passed across all links  
  Then messages are passed around until convergence 

(not guaranteed!). 
  Approximate but tractable for large graphs. 
  Sometime works well, sometimes not at all. 


